Apple Lisa Architecture

Apple

Table of Contents
e Introduction
« Design Goals
e Intended Application
« Architectural Classification
e Architectural Specification
e Implementations (Versions) of Lisa
e Hardware
o CPU
= CPU Resources
= Internal Bus
= Categories of Functionality
= Miscellaneous
s System Control
o Address Bus
= Data Bus
s Asynchronous Bus Control
s Synchronous Bus Control
o Interrupt Control
o Bus Arbitration Control
= Function Code
= Addressing Modes and Formats
= Data Types
= Instruction Set
= Instruction Execution and Timing
= Exception Processing
= Procedure Calling
o Control Unit
o Memory Management System
o |/0 System
= Data Transfer Operations
= Read Cycle
= Write Cycle
= External Bus Structure
= Bus Request (BR)
= Bus Grant (BG)
= Bus Grant Acknowledge (BGACK)
= Read-Modify-Write Cycle
= Requesting the Bus
= Receiving the Bus Grant
= Asynchronous Bus Control
= Address Strobe (AS)
= Read/Write (R/W)
= Upper Data Strobe & Lower Data
Strobe (UDS) & (LDS)
= Data Transfer Acknowledge
(DTACK)
e Lisa Operating System
o Filesystem
o Process Management
o Memory Management
o Exception and Event Processing
e OS Support
o Lisa Software
o Other Lisa Features
« References
e Appendix

Introduction:

10/10/03 3:15 PM

Jon Freeland - Joslin Hendricks - Keith Powell - Sharad Tiwari

Upon its introduction in 1983, the Apple Lisa was filnst personal computer to make use of a Graphical User Interface (GUI).
The Lisa (sometimes LISA) was initially rumoured to have been named &fese Jobs' daughter or the daughter of one of the
developers, but officiallyApple said it meant Logical Integrated Software Architecture. Lisa was lmffenf the Smalltalk
system, developed by Xerox at Xerox PARC (Palo Aetsearch Center). When development began on the Lisa in 1979, the

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

Page 1 of 13

Apple Lisa Architecture 10/10/03 3:15 PM

charter for this project specified that this computer should be easy to use andthBavger to spend more time being
productive than figuring out how to udee computer[1][4]

Design Goals:

The Lisa had several design goals that would make it stand out from other personal computers at the timeheFlrisg should
be intuitive so that the user can easily figure out how to perform the tasks he is trying to accd@aptsd, it should be
consistent so that once the user learns how to perform a task, he can perform that task the sameemayhere. Third, the
system should work the way people do and not the other way around. Users should be able to woudktguie tasks in multiple
applications without having to close one application to start another one. Fourth, the sreielth have enough performance to
be able to accomplish tasks in a reasonable amount of time. The features that the Lisseehad/ery resource intensive,
especially with the graphics processing that was required. Fifth, the system was suppopeavite an open software and
hardware architecture to allow for expansion to meet user requirements not only with sollgi@hsped by Apple Computer,
but by third party vendors as well. The sixth goal was reliability. Users should be able tiiesystem and not have to be
concerned about the system crashing unexpectedly and their files being lost. The seventlorgtiz Lisa was to be
aesthetically pleasing and be a good fit in a corporate environment. The Lisa, unlike someath&éheomputers popular at the
time, was contained in one chassis that included the monitor, floppy drives, and all acfdin¢ and processor boards. The
only items to plug in were a keyboard and mouse and optionally a five or ten MB extardalisk[1]

Intended Application:

The Lisa wasntended for corporate desktop use as well as consumer use, but its high price (US $9995.00) made it
impractical for mostonsumers. The Lisa was able to do word processing, spreadsheets, graphic design, databases, project
management, connect tother text-based systems, and other applications - not new concepts at the time, but the way that the
Lisa accomplished thiand presented it to the user in an intuitive, easy to learn manner made it radically different from other
systems availablet that time. The concepts behind the Lisa were not necessarily new - many had been around for several
years, but were noimplemented in commercially available systefng[4]

Architectural Classification:

The Motorola 68000 is a CISC microprocessor, the first member of a successful familigr@iprocessors, which were all

mostly software compatible. It is a Von Neumann SISD processor. The 68000 microprocessor is packaged in a 64-pin dual in-
line processor. It is a 16-bit microprocessor that communicatiék the outside world via a 16-bit bi-directional data bus.

In the standard version of 68000, the clotkquency may be set to anything as long as it doesn't exceed 8 MHz or drop below 2
MHz. Originally, th&lotorola 68000 was designed for use in household products When the Motorola 68000 was introduced,
16-bit busseswere really the most practical size.

Architectural Specifications:

Codename: Lisa

CPU: MC68000

CPU speed: 5 Mhz

FPU: None

motherboard RAM: 512 k

maximum RAM: 2MB (via 3rd party upgrade)

number of sockets: 2 -- lisa cards

minimum speed: n/a

ROM: 16k of diagnostic and bootstrap code present

L1 cache: n/a

L2 cache: n/a

data path: 16 bit

bus speed: 5 Mhz

slots: 3 Proprietary

SCSI1: none

Serial Ports: 2 RS-232

Parallel Ports: 1 (dropped in Lisa 2/MacXL)

Floppy: 2 internal 871k 5.25" (400k Sony 3.5" in Lisa2/MacXL)
HD: 5 MB external (10MB in some configurations of Lisa 2/MacXL)
CD-ROM: none

Monitor: 12" 720 x 360 built-in (B/W)

Sound Input/Output: Continuously Variable Slope Demodulator (CVSD)
Ethernet: none

Gestalt 1D: 2

power: 150 Watts

Weight: 48 Ibs. Dimensions: 15.2" H x 18.7" W x 13.8" D

Min System Software: Lisa0OS

Max System Software: LisaOS/MacWorks

introduced: January 1983

terminated: August 1986[4]

Implementations (Versions) of Lisa:

Between January 1983 and April 1985, there were thveesions of Lisa. The first version, Lisa, came with two proprietary
Twiggy(5.25", 860K) floppy drives, 512K or 1MB of RAM, a 5MB ProFile externaldrarel. The 12" monochrome

monitor was built in to the Lisa chassis. Whpple release the Macintosh in 1984, they also released a cheaper veofithe

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/ Page 2 of 13

Apple Lisa Architecture 10/10/03 3:15 PM

Lisa called the Lisa 2. The Lisa 2 had one Sony 400k 3.5" flopmy configurations were available with 2MB of RAM and a
10MB external hardirive. In January 1985, the Lisa 2/10 was renamed as the Macintosh XL. Afsuleeleased a software
emulator called Macworks that would allow the UWisarun the Mac OS. The Lisa/Macintosh XL was discontinued in April
1985 [4]

Hardware:

e CPU - The Motorola 68000 processor was first engineered in September 1979. Prototypes were released in 1982 and
the processor was commercially available in 1983. While it was supposedly intended for use in household products, it
actually ended up being used in several well known computers and gaming consoles. The 68000 is a 16 bit processor
because its external data path is 16 bits, but its internal data paths and registers are 32 bits and its address bus is 24
bits. It was packaged in a 64 pin chip - 40 of those pins were used for datadahrdssing[13]

The 68000 uses sixteen 32 bit registers which are broken off into eight data and address registers. For the address
registers, one is reserved for the stack pointer while the rest were limited to move, add/subtract, and load effective
address.

CPU Resources

External data accesses by the 16 data lines (bus) and the 23 address lines (bus) give the 68000 the ability to address
over 16 million bytes of memory. Since devices are in constant need of the processor, there will often be bus contention.
To reduce the bus contention, the 68000 has special control signals discussed in "Bus Arbitration,” that activate the
external circuitry that allows smooth interfacing with it's outside deyi&gs.

The 68000 has eight general purpose registers and address registers, each are 32 bits in length. It is great to have an
enormous space to work with but some operations do not require the entire use of the register. One problem with big
registers is that you could be wasting space, but the 68000 is able to work with partitions on each registers. The
registers can be broken down into 16, 8, or 1 bit at a time for instruction operations. Each partitioned size, except for
the 1 bit, can be addressed by using a special extension along with the instruction mngn@pide last address

register, A7, was used for the standard stack poinfeg]

Coprocessors and other functional units where implemented for the later version of the 68000 series, but the 68000 was
capable of mapping to another processor and run in parallel given the proper implementation prodedjres.

Internal Bus

The 68000 is said to have a single-bus architecture since the I/0 and memory units share the same bus with 68000. The
number of signal lines devoted to addresses, data, and control signals essentially determines the capability of the single
bus system. The 68000 actually had 64 signal lines to accommodate addresses and data, addresses, and control signals in
additions to several other functiora.6]

Categories of Functionality:

o Miscellaneous: Pins Vcc and Gnd fall under this category. These pirts connect power to the chip. Vcc is the power
supply and Gnd stands for ground.

o System Control: System control is comprised of CLK, RESET, and HALT pins. The CLK pin or clock does all the
internal timing for the 68000. The clock input must never stop, fall below, or exceed the pulse variance length. The
bi-directional RESET pin, once activated with an active-low level signal, loads the supervisor stack pointer A7 from
location O then makes the processor execute a sequence of actions under the reset operation which is under exception
handling. Also, RESET can reset all of the external devices without resetting the chip itself. The bi-directional pin
HALT has three functions: it can make the 68000 stop processing at the end of the current bus cycle; in conjunction
with the BERR pin, it can be used to repeat a failed bus cycle; and it can be used as an output to interpret what
happened when it can not recover from an operation.

o Address Bus: The 23-bit Address Bus is comprised of pins AO1 to A23 makes the majority of the pins on the
68000. Every pin is unidirectional and can allow up to 223 16-bit words to be addressed uniquely.

o Data Bus: The 16-bit bi-directional Data Bus, DOO to D15, can act as input during a read cycle and output during a
write cycle.

o Asynchronous Bus Control: Asynchronous data transfer deals with transfers that refer to the address strobe in
processing the addresses and data. The AS (active-low address strobe) pin determines the validity of the content in
the address bus. The R/W (read/write) pin chooses each cycle to be either read or write. The Upper and Lower data
strobes, UDS and LDS, control the data bus to either the entire 16 bits be addressed or either the top or lower half
will be addressed. The DTACK pin acts like a check in station for the processor (stands for Data Transfer
ACKnowledge). When DTACK is asserted, the processor will complete the access and start on the next cycle. When
DTACK is not present, then the processor will produce wait states until DTACK is present or an error occurs. Finally
the BERR pin, bus error control, informs the 68000 that something is wrong with the bus cycle allowing for the
processor to recoverf11]

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/ Page 3 of 13

Apple Lisa Architecture 10/10/03 3:15 PM

o Synchronous Bus Control: With synchronous data transfer, each address is validated and processed in sync with
the clock pin, making it easier for interfacing. The VPA, or valid peripheral address, is activated when a device sends
a active-low valid address input to the pin requesting for a synchronous bus cycle by use of the VMA and E pins. The
VMA, or valid memory address, sends an active low signal back to the device telling it that it has a valid address sent
from the VPA. The E pin (enable) is the time that is used for communication between the device and the processor.
The E clock cycle is equal to ten 68000 clock cycles.

o Interrupt Control Interface: These three pins (IPLO, IPL1, and IPL2) are used by extedewices to request
service. Each bit are used as an interrupt mask bit to determine the level of interrupt. An interrupt level goes from
0 to 7 in a three bit number where O is the lowest level and 7 is the hig¢nest High level interrupts will always
override the low level interrupts.

o Bus Arbitration : Thisgroups main focus is to allow smooth communication with other procesBees. though the
68000 is considered the "bus master," other processors msg the system bus with its permission. The bus
request pin (BR) is assertedghen another devices wants to use system bus. This signal have to be respdiodey
the 68000 for this signal does not share the properties of an intertuptte 68000 accepts the request, then the
bus grant pin (BG) is asserteahd sent back to the corresponding device to let it know that it can proOeed.the
bus grant acknowledge pin (BGACK) is asserted, then the sydtamis under the control of the device. Nothing else,
including the CPUtself, can access the system bus as long as the BGACK is asseft).

o Function Code: Three pins (FCO-FC2) serve as a three bit mask to determine the type of cycle being executed. The
chart display the following cycle type:

Function Code Output

FC2 FC1 FCO Processor Cycle Type
(0] [0} (0] Undefined, Reserved
(0] [0} 1 User Data
0] 1 0] User Program
0] 1 1 Undefined, Reserved
1 (0] (0] Undefined, Reserved
1 0 1 Supervisor Data
1 1 (0} Supervisor Program
1 1 1 CPU Space (interrupt

acknowledge)

The CPU can run in two states: user or supervisor. The user state is more associated with programs executing under
the OS while the supervisor state is more associated with the OS itself. The supervisor state has the highest privilege
and there are a few instructions that can only be executed in this sf2a0g.

o Addressing Modes and Formats - The 68000 also supports fourteen different addressiagles, which ranks it
high among the most powerful microprocessors. These addressing modes are derived frbasgixtypes, which are
absolute, immediate, register direct, register indirect, program counter relativémahed[11] Addressing modes
are used to calculate the actual address, or effective address, of the opgtajdlVithin immediate addressing, the
operand simply follows the instruction. Similarly, in absolute modeadteess, which is in short 16-bit form or
long 32-bit form, the address of the operand follows the instruction. When register direct addressing is used, it is
no longer necessary to calculate the effective address becdhseaddress of the operand is specified diredqtig]
Indirect addressing uses an address registerthtdd the address of the operand. Program counter (PC) relative
addressing is slightly more complex. Within flative, the effective address is calculated by adding a displacement
to whatever value is in the prograoounter. The displacement can either be a positive or negative number. There
are a number of variations withRC relative addressing including PC relative with displacementiadexing[16]

o Data Types - The 68000 supports operations on five main data tyipetuding bits, binary coded decimal (BCD)
digits (4 bits), bytes, words, and long woifd®] The longwords are required to store high words in memory first.
Bytes, words, and long words may be formatted togetteform multiple precision numbers. That is to say for
example, a routine could be written for a 32-tyoeration using two 16 bit wordg1] Data types may be considered

as signed or unsigned. The range for unsigned data type§‘|‘§*2Where n is the length of the data in bits. For signed
datatypes, the range is 2- 1 to +2'"1 -1. [21]

o Instruction Set - The Motorola 68000 processor used in the Apple Lisa utilized segeoalps of variable-length
instructions within the instruction sgit9] These instructions were broketown into eight groups consisting of
arithmetic, logical, data transfer, branches, shift and rotatemhbitipulation, BCD operations, program control,
and system controf11]Previous architectures oftecontained several instructions that basically performed the
same operations, however the 68000 was designecetiminate the need for unnecessary mnemonics. Instead, the
instruction was coded to perform operationseaither 8-, 16-, or 32-bit registefsl1] Most of the instructions
were dyadic meaning that theperation had a source and a destination, and the destination was chafiggdcEach
instructionconsisted of an opcode that determined what operation to perform, a designation of the length of the

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/ Page 4 of 13

Apple Lisa Architecture 10/10/03 3:15 PM

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

operand(s), and a specification of the location of the operand(s) involved. Instructions were classtfipd by the
number of operands. The latter determined whether the instruction was single-addrdssilole-address[16]

Instruction Execution and Timing - During normal execution of an operation, the 68000 has two basic tasks
which are fetching instructions from memory and executing the fetched instrudtihdhe 68000 employs a 2-
stage pipeline which simply means that the next instruction can be fetched during exefLitjon.

When performing an instruction fetch, the microprocessor uses the address bus to send the address of the
instruction, then issues a memory read signal (R/W = 1). These instructions for this particular family of
processors are "always stored in multiples of 2, 3, 6, 8, or 10 bytes in length.” The PC (program counter)
register, which is 24 bits wide, is used to monitor the program and the location of the next instruction. The
instruction is decoded and goes into execution when it has been relocated from memory into an internal instruction
register.[15]

There are three main steps that occur during the execution phase: (1) data transfer, (2) arithmetic and logic, and
(3) decisions, with data transfers covering a great deal of the operation. Data transfers occur between the
microprocessor and the memory, between the microprocessor and 170, and between internal registers of the
microprocessor[15]

Cycle time, g, is what the 68000 uses to calculate execution time of instructions and other operations. Since the

speed of the 68000 is 8 MHz, the cycle time has a range of 500 ns maximum to a minimum of 125 ns. These
numbers are based on the time to fetch an instruction, compute the effective addresses, and fetch or store the
operand[16]

Exception Processing - Exceptions for the 68000 are divided into two categories: those caused by an instruction
and those caused by an external event. This particular processor supports 255 different exceptions. Exceptions
caused by instructions are called traps. Traps occur when "exceptional conditions" are caused by the program and
detected by the CPU. Some examples of the traps are trace, divide-by-zero, and privilege violation. Hardware error
exceptions caused by external events are called interrupts. Motorola refers to this hardware error as a bus error. A
few examples of these include bus error, address error, and REGET][16]

The 68000 had seven "strictly prioritized" interrupt levels, which means that higher-numbered interrupts took

priority over lower-numbered interrupts. This was accomplished in the status register by using a privileged
instruction to allow one interrupt to set the minimum interrupt level, which in turn blocked the lower priority
interrupts. The minimum interrupt level was then stored back into the status register. Level 7 was the only level
considered non-maskabl¢13]

The 68000 also provided an exception table, or interrupt vector addresses. Since the addresses were fixed at O
through 1023, this allowed for 256 32-bit vectors. The first and second vectors were used as the starting stack

address and the starting code address, respectively. A range of errors were reported in vectors 3-15 and vector 24

began the "real interrupt§13]

o Procedure Calling - Subroutine instructions are used in programs to improve the oyagelibrmance. Since they
only handle one job at a time, it allows for easier development of modular proggaimoutines in the 68000 can
either be called using the BSR (branch to subroutine) instruction or the JSR ¢ursybroutine) instructiofi5]
The RTS (return from subroutine) instruction is used to return freobaoutine. While the JSR instruction
operates on any address, the BSR instruction only operates on a 16idpied displacemenf18]

Control Unit - TheMotorola MC68000 had a two-level, microprogrammed control unit designcdineol unit
instructions were 17 bits. Each microinstruction could have bit microinstruction jump address or a 9 bit
nanoinstruction address. The nanoinstructions were stored as 68-bit words and were used to itdentify
microinstructions active in any given clock cycle. These nanoinstructions, along with other decoding logic, were used to
drive the 196 control sighala the 68000[6] There are 544 17- bit words in the microengine and 336 68-bit words
in thenanocode engine which makes up 32,096 bits of ROM. There are fewer nandostieictions than microcode
instructions in the 68000; this is to allow commmicrocode instructions to map to the same nanocode instrudtign.

Memory Management System - Before we discuss the LISA's memory management unit, we have to give a quick

overview on how the processor addresses memory. The 68000 supports both synchronous and asynchronous bus transfer.
The address and the data bus are driven by tristate outputs, which allow the buses to be controlled by other devices during
DMA operations in multiprocessors. The pins that control the flow of data between the buses are the R/W, AS, UDS, LDS,

and DTACK pins. Running at 8 MHz, the 68000 can use low-cost dynamic memory (DRAM) without any wait states.
Because cache memory is both expensive and complex, the cache memory generally was not found in most low-cost

microprocessors. Cache memory was not implemented until the 68020 processor and other later versions in the 68000

family; this kept the 68000 at a low prigz]

In the Lisa, memory can be broken into three parts: main system memory, I/0 memory, and special /0 memory. Main

system memory, or RAM, in this system can be upgraded to 1 MB of RAM (2 MB in the Lisa 2/Mac XL). Initially, the base
main memory starts off at 512K. The I/0 memory is reserved for the I/0 devices. Finally, the special memory is used for

booting up the computer and diagnostis}

Page 5 of 13

Apple Lisa Architecture 10/10/03 3:15 PM

The Memory Management Unit (MMU) helps the operating system relocate objects in memory. The MMU method of
addressing is called segmentation. As mentioned before, the 68000 has 23 address lines. Lines A17-A23 are used to select
a specific segment out of 128 total segments. The rest of the bits serve as offset for segments. Each segment has two
registers assigned to it: SORG which describes the origin and SLIM which describes the size. The board then has a segment
limit register that correlates to the MMU the size of the segment, is the segment valid, and control which address space is
accessed. In order for the MMU to be setup, the SORG and the SLIM registers of all the segments must be initialized by the
0S[16]

During an access, a memory error can be detected as either a soft error or a hard error. A soft error is an error that
happens during a board access that can be corrected. A hard error is when either a parity error or an unrecoverable
error happens during memory access. Once either of these errors is signaled, the board latches the address of the error,
interrupts the 68000, and puts the segment and page number in the status register. Therefore, a program can log soft
errors in the board and keep track of hard failures in main memory on a page by page basis for the MMU to map out the
bad pages[5]

e 1/0 System - The Motorol&68000 CPU is able to perform memory mapped 170 in either byte or word lengths.
requires a memory address decoder, connected with the appropriatetasitry. The Motorola 68000 uses memory
mapped 170, and device registeese assigned unique addresses within the memory address space. |/Oatataontrol
registers are used like memory locatiofs4]

I/0 peripherals are connected with the Motorola 68000 through address decolterse I/0 address decoders are used to
map hardware peripheral registets specific memory locations. When the processor reads or write in otleesé 1/0
locations, the peripheral device will take an action. "For a memmapped output location, the memory address decoder
provides a clock puls&o a latch capable of storing the output data. A memory-mapped input locatilonse the memory
address decoder to enable an octal buffer, placing data the CPU's data bus when active. A 16-bit I/0 design requires
two octalbuffers, one latch/buffer for each half of the data bus. The same addiessder may be used with UDS (Upper
Data Strobe) and LDS (Lower Data Strobe)ntrolling the latch/buffer that gets activated. The LDS and UDS signals
used in the 68000 to indicate that an 8-bit bank of memory is usethfomemory or I/0 transfer." LDS is active when
least significant 8 bitare accessed, and UDS is active when the most significant 8 bits are acc§ss3d.

Data Transfer Operations:
Data transfer between devices requires the following signals:

o Address bus Al through highest numbered address line
o Data bus DO through D15
o Control signals

The read, write, read-modify-write, and CPU space cycles are describédwing. The indivisible read-modify-write
cycle implements interlockemhultiprocessor communicatiorfa.5]

Read Cycle:

The processor receives either one or two bytes of data from the memofyom a peripheral device during a read cycle.
When the instruction indicatds/te operation, the processor uses the internal AO bit to determine Wiiehto read and
issues the appropriate data strolje1] If the instructionndicates a word or long-word operation, the MC68000
processor reads botlipper and lower bytes concurrently by maintaining both upper and lowerstaghes. When AO is
equal to zero, the upper data strobe is issued; wiéhequals one, the lower data strobe is issued. When the data is
received,the processor internally positions the byte accordirfaly}

Write Cycle:

The processor sends bytes of data to the memory or peripheral deliceg a write cycle. When the instruction indicates
a byte operation, thprocessor uses the internal AO bit to determine which byte to write and itkaesppropriate data
strobe. If the instruction specifies a word operatidm processor issues both UDS and LDS and writes both bytes. When
the AObit is equal to zero, UDS is used; when the AO bit is equal to one,d DSed[11]

External Bus Structure:

The Motorola 68000 microprocessor has a 16-bit external datadmasa 24-bit address bus which can address 16MB of
external memory, whilenplementing 32 bit registers internally. Only 23 of these address hvidsh are A1 to A23,
are available for use. Address line AO is used indide processor to control other signals: UDS (Upper Data Strobe) and
LDS (LowerData Strobe)15]

Even though, the Motorola 68000 microprocessor has a 16-bit externalllstait is able to transfer 8 bits through the
lower or the upper half afs data bus. The lower data bus is used to transfer all bytes that énaeme addresses and upper
data bus is used to transfer memory addressBss arbitration is another method of handling I/0. The BR (Bus Request)
input get activated when a DMA is requested. By activating this input6&8B©0 microprocessor generates a logic zero on
the BG pin. BG shows thalotorola 68000 has stopped executing software and has open-circuit-ealdiess, data and
control bus connections. This allows an external DMA contradleanother microprocessor, to enter 1/0 and memory
space of the microprocessotherefore allowing the external controller to access memory and I/0 dirfdiybus

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/ Page 6 of 13

Apple Lisa Architecture 10/10/03 3:15 PM

request, bus grant, and bus grant acknowledge signals form aabbiration circuit to classify which device becomes the
bus master devicg11]

Bus Request (BR):

This input is wired with bus request signals from all other dewuikas could be bus masters. The signal indicates to the
processor that somether device needs to become the bus master. Bus requests can be issuadyatime during a cycle or
between cycles.

Bus Grant (BG):

This output signal indicates to all other potential bus master devices that the processor will relinquish bus control at the
end of the current bus cycle.

Bus Grant Acknowledge (BGACK):

This input indicates that some other device has become the bus mashés.signal is not started before the following
conditions are satisfied:

o A bus grant has been received.

o Address strobe is inactive, which indicates that the microprocessor is not using the bus.

o Data transfer acknowledges is inactive, which indicates that neither memory nor peripherals are using the bus.
o Bus grant acknowledge is inactive, which indicates that no other device is still claiming bus mastership.

Read-Modify-Write Cycle:

The read-modify-write cycle does a read operation, changes the mathe arithmetic logic unit (ALU), and writes the
data back to the samaddress. The address strobe (AS) remains maintained throughout the erytale, causing the cycle
indivisible. The test and set (TAS) instructiges this cycle to provide a signaling feature without deadlock between
processorsin a multiprocessing situation. The TAS instruction is the only instruetiarh uses the read-modify-write
cycle, operates on bytes only. Therefoad, read-modify-write cycles are byte operations. "Bus arbitration is a
technique used by bus master devices to request, to be granted, and to acknowbedgeastership.[11]

Requesting The Bus:

External devices capable of becoming bus masters maintain BRetjaest the bus. This signal can be wired from any of the
devices in thesystem that can become bus master. The processor, which is at a lowepibasity level than the external
devices, gives up the bus after it finishdse current bus cyclg11]

Receiving The Bus Grant:

The processor maintains BG as soon as it can. In general, this prdodksws internal synchronization immediately,
except when the processdras made an internal decision to execute the next bus cycle but has nabnaitained AS for
that cycle. In this situation, BG is delayed untili®\&ffirmed to indicate to external devices that a bus cycle is in
progress.BG can be routed through a network or through a specific priority-encodedork. Any method of external
arbitration which observes the protocol dasmused[11]

Asynchronous data transfers are done using the followicgntrol signals: address strobe (AS), read/write (R/W),
upper and lowedata strobes (UDS, LDS), and data transfer acknowledge (DTACK). The addtesbe signal shows there
is a valid address on the address bus. Read/wdtfines the data bus transfer as a read or write cycle. The data strobes
maintain the flow of data on the data bus and the data transfer acknowkddnes that the data transfer is finishgts]

Asynchronous bus control:

Asynchronous data transfers are controlled by the following signals: address strobe, read/write, upfmvemdata
strobes, and data transfer acknowledge. These signals are described below:

Address Strobe (AS):
This three-state signal indicates that the information on the address bus is a valid address.
Read/Write (R/W):

This three-state signal defines the data bus transfer as a read or writes cycle. The R/W signal relatesldata teobe
signals described in the following paragraphs.

Upper Data Strobe And Lower Data Strobes (UDS & LDS):
These three-state signals and R/W control the flow of data on the data bus. Table 3-1 lists the combinattiess of

signals and the corresponding data on the bus. When the R/W line is high, the processor reads frdatatbes. When the
R/W line is low, the processor drives the data bus. In 8-bit mode, UDS is always forceahHighe LDS signal is used.

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/ Page 7 of 13

Apple Lisa Architecture 10/10/03 3:15 PM
Data Transfer Acknowledge (DTACK):

This input signal indicates the completion of the data tran$fden the processor recognizes DTACK during a read cycle,
data is latchedand the bus cycle is terminated. When DTACK is recognized during a ayitle, the bus cycle is
terminated.

Lisa OS:

To meet the design goals and accommodate the applications planned for the Lisa, an OS bactitosen that could handle the
intensive graphics, have a reliable filesystem, do multiple tasks at once (multitaghkang)jood memory management, and

have a mechanism for inter-process communication. This left most opdpelar operating systems out (e.g. DOS, CP/M)
because they could not perform multitasking. UNIX would Hmeen a good choice, but at the time was too large to be of

practical use and no graphics or IPC support hmkn developed as yet. It had a very fragile filesystem that the end-user would
likely not be able to recovelata from in the event of a system crash. Re-writing UNIX to conform to the Lisa's requirements
would havebeen very costly and more time consuming than was practical, so Apple wrote an OS for the Lisa from theuground
There are four main functional areas to the Lisa Operating System. It manages files, processes, memdmndiesl events and
exceptiond:1]

e Filesystem - The Lisa OS handled files in a similar fashion to UNIX and Multics. Deatcedisks had to be mounted to be
used by the OS. All I70 was device independent and was handled asarterpreted stream of bytes, so all objects were
treated the same way with special functions used to hapdidicular needs of a device when required. Since one of the
goals of the Lisa was reliability, a departure waade from the UNIX filesystem (as it existed at the time) and some
redundancy was built in to keep users fréosing data in the event of a system crash. Each file maintained its descriptive
attributes in the master disind in a block at the beginning of the file. Each block also maintained information to tell
which file itbelonged to. Apple provided a "scavenger' program that could rebuild the disk catalog if it became

corrupted[1]

e Process Management - The Lisa OS was able to run multiple processes at once, similarliild environment without
the multi-user features. Processes are organized in a tree structure and capdwmed by a master process that is
initiated at boot time. A similar multiplexed, prioritized scheduleseid to allow processes to get CPU time, but unlike
UNIX, a nonpreemptive algorithm is employed.iBylementing this type of algorithm, the overhead of locking and
unlocking resources prior to use is avoidddhe Lisa OS allows all processes to perform certain functions. Processes can
"suspend, activate, Kill, atherwise control any other procesqd.1] Termination of a parent process causes all of its
childprocess to be terminated as well. Inter-process communication (IPC) is done by sharing files, data segments in
memory, and/or events. To make the operating system more reliable, each process has its own stack sphugieaild
address spacd.1]

e Memory Management - Since the Motorola MC 68000 did not provide virtnamory capability, this functionality was
relegated to the OS and a separate memory management unit (MMpple designers used a segmented memory model to
implement virtual memory. Processes have data and ceegments. The data segment is created as a stack and the code
segments, specified by the programmer at comgilae, help break the program up into smaller parts. All data segments
for a program have to be loaded into memory before that program can run. This is because the instructions that reference
the data segments are not restartable. Segments of code, however, are loaded into memory from disk as needed. The process
can request additional stack space if needed - up to sixteen additional segnjafts.

Code segments can be either intrinsic (system libraries) or regular (shared by processes that are running different
instances of the same program). The reason that code segments can be swapped in as nheeded is because the instthattions
access the code segments are restartable. If one of those instructions (there are four - JMP, JSR, RTS, atwieRTt®)
access a code segment that is not currently loaded into memory, it will cause a bus error. This causesoebtrapnt to

the Lisa OS and it will then load the segment it needs and restart the instruction without the running Evgreing
interruptedf1]

When the physical memory becomes full, the Lisa OS uses a ghagje replacement algorithm to determine which memory
segments it will swaput. Information about all of the memory segments is kept in a Segment DescBlutok (SDB)

that is internal to the MMU. The clock page replacement algorithibased upon a circular list that can be thought of as a
clock face. Irthis case, the circular SDB list is represented as the clock face. Tieer@ointer that can be thought of as a
clock hand and when a page faubtcurs, the segment that the clock hand is pointing to is examined. Bpamination, this
can result in either swapping out the current segment aavbncing the hand, or ignoring the current segment and
advancing the handthen examining the next segment until if finds enough free segments or ssdpEnough segments to
load the segments that are being requested. The bur method is used here as well to determine which segments of
memory haven't been used and need to be swapped ¢ut[10]

e Exception and Event Processing - The Lisa OS also handles certatiypes of errors that occur during process execution.
These errors are called exceptions. Usually, they emased when a process tries to execute an illegal instruction, tries to
access a memory address that is nallocated to that process, tries to divide by zero, or other errors that would cause
problems elsewhere in theystem. When one of these errors happens, a process can use one of three types of exception
handlers: OSsupplied default handlers that will simply terminate the process and keep it from interfering with other
processes, handlers that are supplied by the process, or user defined hardIErs.

Events occur when processes need to pass messages or control signals to each other. In the Lisa OS, thevesitseésnthe

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/ Page 8 of 13

Apple Lisa Architecture 10/10/03 3:15 PM

event headers and it is up to the sending process to write the event. The receiving phocgsets the event message.
Events are passed on channels and the names of these channels are catalog#idebfile system. The Lisa OS maintained an
event channel with no name that allows processes to get systeemts that relate to its child processgs.

OS Support:
The Apple Lisa supports several operating systems in addition to the Lisa OS including Unix, CP/M, XENIX, and the Mac OS
(with the MacWorks emulator}4]

Lisa Software:

To make the Lisa a useful tool, Apple released a productivity suite known as the Lisa$)ffteen (later called "Lisa 7/7"
because "seven sevenths make a wholgd]). These applications wengrecursors to modern office software. Apple claimed that
anyone could learn these applications and put thenproductive use in about 30 minutes. All of them claimed WYSIWYG
(What-You-See-Is-What-You-Get) fidelity faninting, a "revert to previous version" feature that would allow a user to
return to a previous documenersion if mistakes were made, and data from one application could be inserted into afi@ther.

The Lisa's word processor was called LisaWrite. The document size was only limited to the amount of diskvspladde.
Spreadsheet functions were performed by LisaCalc and each spreadsheet could have a maximum ofviab&nd 255 columns.
LisaGraph was used to generate graphs that could be directly created from LisaCalamariwal input. It would display pie,

bar, line, and scatter graphs with maximum of around 2000 data pointdl@djraph would update instantly. LisaList was a
personal database program. It could handle databaseamdroximately 600KBytes. It had a maximum row size of 990 bytes and
allowed for a maximum of 100 columns. Datas indexed using B* indexing, and data could be represented as text, number,
date, money, social securityumber, time, phone number, and zip code. LisaTerminal allowed connections (via serial ports/
modems) to othecomputers. You could connect using either of the two serial ports, and LisaTerminal provided VT52, VT100,
and TTY emulation at speeds ranging from 50 to 19,200 baud. With Apple's Cluster Controller Emulator, tteldidse used

as an IBM 3270 display statidi®] Project planning, management, and scheduling welane by LisaProject. It could do

parallel or resource scheduling and could create project charts for vigliaplaying project plans, schedules, and tagkg.

To further its claim of the Lisa being easy to use, Apple developed an online help system called Lise&rptiecould teach
themselves how to use all of the Lisa's features with the LisaGuide online training céuitse printed manuals were not
available, LisaGuide had all of the necessary documentation online to anmseely any question a user might have. There was a
hardware diagnostic program called LisaTest that was $olda brief period, but Apple discontinued it and referred users to
Apple dealers for hardware diagnostids]

Most of the Lisa applications were written in Pascal. To encourage third party developers, Apple provilies therkshop
development environment. It was a scaled down version of the Lisa Monitor development envirarsedrity Apple's internal
developers and focused mainly on Pascal. There was also a Lisa ToolKit that altawside developers to access the Lisa
Desktop Librarieq43]

Other Lisa Features:

The Lisa had several other features that are worth mentioning. When the Lisa was powerddwafiild save its desktop state
and all application states and go into a "standby" mode. When it was povadon, all of the users applications and
documents were restored to their previous state. There waseféware adjustable contrast setting for the monitor and a
dimming feature that would dim the screen to protécafter a period of inactivity.

References:
1. Bruce Daniels,The Architecture of the Lisa Personal Computiovember, 1983
2. The Lisa/Lisa 2/Mac XLhttp://www.apple-history.com/quickgallery.html?where=lisa.html
3. David T. Craig,The Legacy of the Apple Lisa Personal Computer: An Outsider's Mi¢tp://lisa.sunder.net/mirrors/
Simon/Lisa/LisaLegacy/Legacylndex.html
4. Glen Sanfordwww.apple-history.comhttp://www.apple-history.com/lisa.htnl986-2002
5. Apple Computer, IncLisa Hardware Reference Manuahttp://www.applefritter.com/lisa/texts/
LisaHardwareManual1981.pdfl981
6. Mark SmothermanA Brief History of Microprogramminbgttp://mprc.pku.edu.cn/users/chengxu/0Org_web_ext/
BriefHist_up/uprog.htmiMarch 1999
7. Chip Weems,University of Massachusetts Amherst Computer Science 535, Chapter 15 ControlHiityit//cs.ddart.net/
computer_architect/CmpSci535/Discussion15.hthb95, 1996, 2001
8. Apple Computer, Inc. Product Specification Brochutestp://www.archaic-apples.com/files/lisa/brochurBévember
1983
9. Semaphore CorporationSemaphore Signal, Issue 14, Exploring Lisa's New Office Systethp://www.applefritter.com/
lisa/texts/LisaSemaphoreSignal.pdfuly 1984
10. William Sawyer CPSC 342 - Operating Systems - Memory Managemehttp://www.cs.bilkent.edu.tr/~will/courses/
CS342/HTML%20slides/Chapter-04/sld024.htr@1-Jan-2002
11. J. L. AntonakosThe 68000 Microprocessor: Hardware and Software Principles and Applications, Second and Fourth
Editions Prentice Hall, Columbus, Ohio, 1998
12. Zargham, M.RComputer Architecture: Single and Parallel Systemfsentice-Hall, N.J., 1996
13. Wikipedia, The Free Online Encyclopediatp://www.wikipedia.org/wiki/Motorola 68000 family
14. David D. RedhedThe Lisa 2: Apple's Ablest ComputeByte, vol. 9, Dec. 1984, pp. A106-A115

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/ Page 9 of 13

Apple Lisa Architecture

10/10/03 3:15 PM

15. Barry B. Brey,The Motorola Microprocessor Family: 68000, 68008, 68010, 68020, 68030, and 68fx@ders/
HJB, 1992
16. Thomas L. Harmon and Barbara Lawson, The Motorola MC68000 Microprocessor Family, Prentice-Hall, 1985
17. The Free Online Dictionary of Computiridotorola 68000 http://burks.brighton.ac.uk/burks/foldoc/81/75.hth999
18. Chris Chabris,Introducing 520ST Assembly Language - MC 68000 Tutoratic Vol 4, No. 8, December 1985
19. Gabriel Acosta-Lopez, Richard Clark, and Anne Wyso@kip Representative CISC Designbttp://physinfo.ulb.ac.be/
divers html/PowerPC Programming Info/intro to risc/irt4 cisc3.ht®995
20. Alan ClementsMicroprocessor System Design - 68000 Hardware, Software, and Interfa@wWg, 1987
Appendix:
Device Device
™
4 b
Data write I
. r
. Systemn bus
-
IA| l
Data read
L y
5. 2
CPU Memory

A system using the CPU to perform all /O

Figure 1
Device Device
Data
write
: System bus
Command l O l Data
. read
DMA

CPU

controller

Memory

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

Page 10 of 13

Apple Lisa Architecture

A system employing a DMA controller to perform 1/O

Motorola 68000 Pin Configuration

IFL1 A
IFLO A

Dys
Dy D
Dy Dyq
L Dz
Do Dy
s D,
Ly L
LD: Dy,
R D,
DTACE Dna
EG D,
BGACE ZHD
EE s
il By
CLE Ay
GHD Wee
HALT By
RESET 0
Whis Lz
E Ay
VP4 &g
EERE &

% IFL2 By %

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

Miscellaneous

Ve 20, GND (2 — 4 pins

Furction Code

FCO-FC2 -3 pins

Sysiem Control

CLE, RESET, HALT -3 pins

Interrupi Control

ILFO-ILF2 -3 s

Bus Arhitration Comntrol

EE, BG, BG ACK — 3 pins

Synchronous Bus Conirol

E, VPA, VMA —3 pirs

Asynchronous Bus Condrol

A3, FSW, UDS, LDS, DTACK — & pins

Data Bus

Dw-Ds — 16 pins

Address Bus

Am-.l!:LJH =23 P]I'IE

10/10/03 3:15 PM

Page 11 of 13

Apple Lisa Architecture 10/10/03 3:15 PM

Figure 3
‘Save (SR)
Internally
Set Su isor mode; trace off.
s={1},T={0} W
! For vectored interrupts, vector
Determine number is supplied by external
Vector device: for all other exceptions,
Number generated internally.
Push (PC)
Push Saved (SR) Save return address and status.
on Supervisor Stack
Load Exception
Address
(PC) + (Vector Address)
Begin Instruction
Execution in Process exception.
Exception Routine
b e M b sl e ael e asvee beal inbitiv
Figure 4 - Exception Processing Sequence [16]
Operation Time
Write to memory 4r. word
8z, longword
Read from memory 4¢, word
8¢, longword

Calculate effective address
of source and fetch operand

Instruction execution

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

0 to 12¢_byte, word
0 to 16¢_ longword

d¢ tn 15R¢

Page 12 of 13

Apple Lisa Architecture 10/10/03 3:15 PM

e ——— T e mw

(including instruction fetch)

Interrupt response 441,
TRAP instruction 381,
Figure 5 - Instruction Execution Time [16]

http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/ Page 13 of 13

