
Apple Jon Freeland - Joslin Hendricks - Keith Powell - Sharad Tiwari

Table of Contents

Introduction
Design Goals
Intended Application
Architectural Classification
Architectural Specification
Implementations (Versions) of Lisa
Hardware

CPU
CPU Resources
Internal Bus
Categories of Functionality

Miscellaneous
System Control
Address Bus
Data Bus
Asynchronous Bus Control
Synchronous Bus Control
Interrupt Control
Bus Arbitration Control
Function Code

Addressing Modes and Formats
Data Types
Instruction Set
Instruction Execution and Timing
Exception Processing
Procedure Calling

Control Unit
Memory Management System
I/O System

Data Transfer Operations
Read Cycle
Write Cycle
External Bus Structure
Bus Request (BR)
Bus Grant (BG)
Bus Grant Acknowledge (BGACK)
Read-Modify-Write Cycle
Requesting the Bus
Receiving the Bus Grant
Asynchronous Bus Control
Address Strobe (AS)
Read/Write (R/W)
Upper Data Strobe & Lower Data
Strobe (UDS) & (LDS)
Data Transfer Acknowledge
(DTACK)

Lisa Operating System
Filesystem
Process Management
Memory Management
Exception and Event Processing

OS Support
Lisa Software
Other Lisa Features
References
Appendix

Introduction:
Upon its introduction in 1983, the Apple Lisa was thefirst personal computer to make use of a Graphical User Interface (GUI).
The Lisa (sometimes LISA) was initially rumoured to have been named afterSteve Jobs' daughter or the daughter of one of the
developers, but officially,Apple said it meant Logical Integrated Software Architecture. Lisa was basedoff of the Smalltalk
system, developed by Xerox at Xerox PARC (Palo AltoResearch Center). When development began on the Lisa in 1979, the

10/10/03 3:15 PMApple Lisa Architecture

Page 1 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

charter for this project specified that this computer should be easy to use and allowthe user to spend more time being
productive than figuring out how to usethe computer. [1][4]

Design Goals:
The Lisa had several design goals that would make it stand out from other personal computers at the time. First,the Lisa should
be intuitive so that the user can easily figure out how to perform the tasks he is trying to accomplish.Second, it should be
consistent so that once the user learns how to perform a task, he can perform that task the same wayeverywhere. Third, the
system should work the way people do and not the other way around. Users should be able to work onmultiple tasks in multiple
applications without having to close one application to start another one. Fourth, the systemshould have enough performance to
be able to accomplish tasks in a reasonable amount of time. The features that the Lisa hadwere very resource intensive,
especially with the graphics processing that was required. Fifth, the system was supposed toprovide an open software and
hardware architecture to allow for expansion to meet user requirements not only with solutionsdeveloped by Apple Computer,
but by third party vendors as well. The sixth goal was reliability. Users should be able to usethe system and not have to be
concerned about the system crashing unexpectedly and their files being lost. The seventh goalfor the Lisa was to be
aesthetically pleasing and be a good fit in a corporate environment. The Lisa, unlike some of theother computers popular at the
time, was contained in one chassis that included the monitor, floppy drives, and all of thecircuit and processor boards. The
only items to plug in were a keyboard and mouse and optionally a five or ten MB externalhard disk.[1]

Intended Application:
The Lisa wasintended for corporate desktop use as well as consumer use, but its high price (US $9995.00) made it
impractical for mostconsumers. The Lisa was able to do word processing, spreadsheets, graphic design, databases, project
management, connect toother text-based systems, and other applications - not new concepts at the time, but the way that the
Lisa accomplished thisand presented it to the user in an intuitive, easy to learn manner made it radically different from other
systems availableat that time. The concepts behind the Lisa were not necessarily new - many had been around for several
years, but were notimplemented in commercially available systems.[1][4]

Architectural Classification:
The Motorola 68000 is a CISC microprocessor, the first member of a successful family ofmicroprocessors, which were all
mostly software compatible. It is a Von Neumann SISD processor. The 68000 microprocessor is packaged in a 64-pin dual in-
line processor. It is a 16-bit microprocessor that communicateswith the outside world via a 16-bit bi-directional data bus.
In the standard version of 68000, the clockfrequency may be set to anything as long as it doesn't exceed 8 MHz or drop below 2
MHz. Originally, theMotorola 68000 was designed for use in household products When the Motorola 68000 was introduced,
16-bit busseswere really the most practical size.

Architectural Specifications:
Codename: Lisa
CPU: MC68000
CPU speed: 5 Mhz
FPU: None
motherboard RAM: 512 k
maximum RAM: 2MB (via 3rd party upgrade)
number of sockets: 2 -- lisa cards
minimum speed: n/a
ROM: 16k of diagnostic and bootstrap code present
L1 cache: n/a
L2 cache: n/a
data path: 16 bit
bus speed: 5 Mhz
slots: 3 Proprietary
SCSI: none
Serial Ports: 2 RS-232
Parallel Ports: 1 (dropped in Lisa 2/MacXL)
Floppy: 2 internal 871k 5.25" (400k Sony 3.5" in Lisa2/MacXL)
HD: 5 MB external (10MB in some configurations of Lisa 2/MacXL)
CD-ROM: none
Monitor: 12" 720 x 360 built-in (B/W)
Sound Input/Output: Continuously Variable Slope Demodulator (CVSD)
Ethernet: none
Gestalt ID: 2
power: 150 Watts
Weight: 48 lbs. Dimensions: 15.2" H x 18.7" W x 13.8" D
Min System Software: LisaOS
Max System Software: LisaOS/MacWorks
introduced: January 1983
terminated: August 1986[4]

Implementations (Versions) of Lisa:
Between January 1983 and April 1985, there were threeversions of Lisa. The first version, Lisa, came with two proprietary
Twiggy(5.25", 860K) floppy drives, 512K or 1MB of RAM, a 5MB ProFile external harddrive. The 12" monochrome
monitor was built in to the Lisa chassis. WhenApple release the Macintosh in 1984, they also released a cheaper versionof the

10/10/03 3:15 PMApple Lisa Architecture

Page 2 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

Lisa called the Lisa 2. The Lisa 2 had one Sony 400k 3.5" floppy,and configurations were available with 2MB of RAM and a
10MB external harddrive. In January 1985, the Lisa 2/10 was renamed as the Macintosh XL. Applealso released a software
emulator called Macworks that would allow the Lisato run the Mac OS. The Lisa/Macintosh XL was discontinued in April
 1985.[4]

Hardware:
 - The Motorola 68000 processor was first engineered in September 1979. Prototypes were released in 1982 and

the processor was commercially available in 1983. While it was supposedly intended for use in household products, it
actually ended up being used in several well known computers and gaming consoles. The 68000 is a 16 bit processor
because its external data path is 16 bits, but its internal data paths and registers are 32 bits and its address bus is 24
bits. It was packaged in a 64 pin chip - 40 of those pins were used for data andaddressing.

CPU

[13]

The 68000 uses sixteen 32 bit registers which are broken off into eight data and address registers. For the address
registers, one is reserved for the stack pointer while the rest were limited to move, add/subtract, and load effective
address.

CPU Resources

External data accesses by the 16 data lines (bus) and the 23 address lines (bus) give the 68000 the ability to address
over 16 million bytes of memory. Since devices are in constant need of the processor, there will often be bus contention.
To reduce the bus contention, the 68000 has special control signals discussed in "Bus Arbitration," that activate the
external circuitry that allows smooth interfacing with it's outside devices.[12]

The 68000 has eight general purpose registers and address registers, each are 32 bits in length. It is great to have an
enormous space to work with but some operations do not require the entire use of the register. One problem with big
registers is that you could be wasting space, but the 68000 is able to work with partitions on each registers. The
registers can be broken down into 16, 8, or 1 bit at a time for instruction operations. Each partitioned size, except for
the 1 bit, can be addressed by using a special extension along with the instruction mnemonic.The last address
register, A7, was used for the standard stack pointer.

[12]
[13]

Coprocessors and other functional units where implemented for the later version of the 68000 series, but the 68000 was
capable of mapping to another processor and run in parallel given the proper implementation procedures.[20]

Internal Bus

The 68000 is said to have a single-bus architecture since the I/O and memory units share the same bus with 68000. The
number of signal lines devoted to addresses, data, and control signals essentially determines the capability of the single
bus system. The 68000 actually had 64 signal lines to accommodate addresses and data, addresses, and control signals in
additions to several other functions.[16]

Categories of Functionality:

Pins Vcc and Gnd fall under this category. These twopins connect power to the chip. Vcc is the power
supply and Gnd stands for ground.
Miscellaneous:

System control is comprised of CLK, RESET, and HALT pins. The CLK pin or clock does all the
internal timing for the 68000. The clock input must never stop, fall below, or exceed the pulse variance length. The
bi-directional RESET pin, once activated with an active-low level signal, loads the supervisor stack pointer A7 from
location 0 then makes the processor execute a sequence of actions under the reset operation which is under exception
handling. Also, RESET can reset all of the external devices without resetting the chip itself. The bi-directional pin
HALT has three functions: it can make the 68000 stop processing at the end of the current bus cycle; in conjunction
with the BERR pin, it can be used to repeat a failed bus cycle; and it can be used as an output to interpret what
happened when it can not recover from an operation.

System Control:

The 23-bit Address Bus is comprised of pins A01 to A23 makes the majority of the pins on the
68000. Every pin is unidirectional and can allow up to 223 16-bit words to be addressed uniquely.
Address Bus:

The 16-bit bi-directional Data Bus, D00 to D15, can act as input during a read cycle and output during a
write cycle.
Data Bus:

Asynchronous data transfer deals with transfers that refer to the address strobe in
processing the addresses and data. The AS (active-low address strobe) pin determines the validity of the content in
the address bus. The R/W (read/write) pin chooses each cycle to be either read or write. The Upper and Lower data
strobes, UDS and LDS, control the data bus to either the entire 16 bits be addressed or either the top or lower half
will be addressed. The DTACK pin acts like a check in station for the processor (stands for Data Transfer
ACKnowledge). When DTACK is asserted, the processor will complete the access and start on the next cycle. When
DTACK is not present, then the processor will produce wait states until DTACK is present or an error occurs. Finally
the BERR pin, bus error control, informs the 68000 that something is wrong with the bus cycle allowing for the
processor to recover.

Asynchronous Bus Control:

[11]

10/10/03 3:15 PMApple Lisa Architecture

Page 3 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

 With synchronous data transfer, each address is validated and processed in sync with
the clock pin, making it easier for interfacing. The VPA, or valid peripheral address, is activated when a device sends
a active-low valid address input to the pin requesting for a synchronous bus cycle by use of the VMA and E pins. The
VMA, or valid memory address, sends an active low signal back to the device telling it that it has a valid address sent
from the VPA. The E pin (enable) is the time that is used for communication between the device and the processor.
The E clock cycle is equal to ten 68000 clock cycles.

Synchronous Bus Control:

 These three pins (IPL0, IPL1, and IPL2) are used by externaldevices to request
service. Each bit are used as an interrupt mask bit to determine the level of interrupt. An interrupt level goes from
0 to 7 in a three bit number where 0 is the lowest level and 7 is the highestlevel. High level interrupts will always
override the low level interrupts.

Interrupt Control Interface:

: Thisgroups main focus is to allow smooth communication with other processors.Even though the
68000 is considered the "bus master," other processors mayuse the system bus with its permission. The bus
request pin (BR) is assertedwhen another devices wants to use system bus. This signal have to be respondedto by
the 68000 for this signal does not share the properties of an interrupt.If the 68000 accepts the request, then the
bus grant pin (BG) is assertedand sent back to the corresponding device to let it know that it can proceed.Once the
bus grant acknowledge pin (BGACK) is asserted, then the systembus is under the control of the device. Nothing else,
including the CPUitself, can access the system bus as long as the BGACK is asserted.

Bus Arbitration

[20]

 Three pins (FC0-FC2) serve as a three bit mask to determine the type of cycle being executed. The
chart display the following cycle type:
Function Code:

Function Code Output

FC2 FC1 FC0 Processor Cycle Type

0 0 0 Undefined, Reserved

0 0 1 User Data

0 1 0 User Program

0 1 1 Undefined, Reserved

1 0 0 Undefined, Reserved

1 0 1 Supervisor Data

1 1 0 Supervisor Program

1 1 1 CPU Space (interrupt
acknowledge)

The CPU can run in two states: user or supervisor. The user state is more associated with programs executing under
the OS while the supervisor state is more associated with the OS itself. The supervisor state has the highest privilege
and there are a few instructions that can only be executed in this state. [20]

 - The 68000 also supports fourteen different addressingmodes, which ranks it
high among the most powerful microprocessors. These addressing modes are derived from sixbasic types, which are
absolute, immediate, register direct, register indirect, program counter relative, andimplied. Addressing modes
are used to calculate the actual address, or effective address, of the operand.Within immediate addressing, the
operand simply follows the instruction. Similarly, in absolute mode, theaddress, which is in short 16-bit form or
long 32-bit form, the address of the operand follows the instruction. When register direct addressing is used, it is
no longer necessary to calculate the effective address becausethe address of the operand is specified directly.
Indirect addressing uses an address register tohold the address of the operand. Program counter (PC) relative
addressing is slightly more complex. Within PCrelative, the effective address is calculated by adding a displacement
to whatever value is in the programcounter. The displacement can either be a positive or negative number. There
are a number of variations withinPC relative addressing including PC relative with displacement andindexing.

Addressing Modes and Formats

[11]
[16]

[16]

[16]

 - The 68000 supports operations on five main data typesincluding bits, binary coded decimal (BCD)
digits (4 bits), bytes, words, and long words. The longwords are required to store high words in memory first.
Bytes, words, and long words may be formatted togetherto form multiple precision numbers. That is to say for
example, a routine could be written for a 32-bitoperation using two 16 bit words. Data types may be considered

as signed or unsigned. The range for unsigned data types is 2, where n is the length of the data in bits. For signed

datatypes, the range is -2 - 1 to +2 -1.

Data Types
[19]

[21]
n-1

n n-1 [21]

 - The Motorola 68000 processor used in the Apple Lisa utilized severalgroups of variable-length
instructions within the instruction set. These instructions were brokendown into eight groups consisting of
arithmetic, logical, data transfer, branches, shift and rotate, bitmanipulation, BCD operations, program control,
and system control. Previous architectures oftencontained several instructions that basically performed the
same operations, however the 68000 was designed toeliminate the need for unnecessary mnemonics. Instead, the
instruction was coded to perform operations oneither 8-, 16-, or 32-bit registers. Most of the instructions
were dyadic meaning that theoperation had a source and a destination, and the destination was changed. Each
instructionconsisted of an opcode that determined what operation to perform, a designation of the length of the

Instruction Set
[19]

[11]

[11]
[13]

10/10/03 3:15 PMApple Lisa Architecture

Page 4 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

operand(s), and a specification of the location of the operand(s) involved. Instructions were classified bytype or the
number of operands. The latter determined whether the instruction was single-address ordouble-address.[16]

 - During normal execution of an operation, the 68000 has two basic tasks
which are fetching instructions from memory and executing the fetched instructions. The 68000 employs a 2-
stage pipeline which simply means that the next instruction can be fetched during execution.

Instruction Execution and Timing
[15]

[17]

When performing an instruction fetch, the microprocessor uses the address bus to send the address of the
instruction, then issues a memory read signal (R/W = 1). These instructions for this particular family of
processors are "always stored in multiples of 2, 3, 6, 8, or 10 bytes in length." The PC (program counter)
register, which is 24 bits wide, is used to monitor the program and the location of the next instruction. The
instruction is decoded and goes into execution when it has been relocated from memory into an internal instruction
register. [15]

There are three main steps that occur during the execution phase: (1) data transfer, (2) arithmetic and logic, and
(3) decisions, with data transfers covering a great deal of the operation. Data transfers occur between the
microprocessor and the memory, between the microprocessor and I/O, and between internal registers of the
microprocessor. [15]

Cycle time, t, is what the 68000 uses to calculate execution time of instructions and other operations. Since the

speed of the 68000 is 8 MHz, the cycle time has a range of 500 ns maximum to a minimum of 125 ns. These
numbers are based on the time to fetch an instruction, compute the effective addresses, and fetch or store the
operand.

c

[16]

 - Exceptions for the 68000 are divided into two categories: those caused by an instruction
and those caused by an external event. This particular processor supports 255 different exceptions. Exceptions
caused by instructions are called traps. Traps occur when "exceptional conditions" are caused by the program and
detected by the CPU. Some examples of the traps are trace, divide-by-zero, and privilege violation. Hardware error
exceptions caused by external events are called interrupts. Motorola refers to this hardware error as a bus error. A
few examples of these include bus error, address error, and RESET.

Exception Processing

[11][16]

The 68000 had seven "strictly prioritized" interrupt levels, which means that higher-numbered interrupts took
priority over lower-numbered interrupts. This was accomplished in the status register by using a privileged
instruction to allow one interrupt to set the minimum interrupt level, which in turn blocked the lower priority
interrupts. The minimum interrupt level was then stored back into the status register. Level 7 was the only level
considered non-maskable.[13]

The 68000 also provided an exception table, or interrupt vector addresses. Since the addresses were fixed at 0
through 1023, this allowed for 256 32-bit vectors. The first and second vectors were used as the starting stack
address and the starting code address, respectively. A range of errors were reported in vectors 3-15 and vector 24
began the "real interrupts"[13]

 - Subroutine instructions are used in programs to improve the overallperformance. Since they
only handle one job at a time, it allows for easier development of modular programs.Subroutines in the 68000 can
either be called using the BSR (branch to subroutine) instruction or the JSR (jumpto subroutine) instruction.
The RTS (return from subroutine) instruction is used to return from asubroutine. While the JSR instruction
operates on any address, the BSR instruction only operates on a 16-bitsigned displacement.

Procedure Calling

[15]

[18]

 - TheMotorola MC68000 had a two-level, microprogrammed control unit design. Thecontrol unit
instructions were 17 bits. Each microinstruction could havea 10 bit microinstruction jump address or a 9 bit
nanoinstruction address. The nanoinstructions were stored as 68-bit words and were used to identifythe
microinstructions active in any given clock cycle. These nanoinstructions, along with other decoding logic, were used to
drive the 196 control signalsin the 68000. There are 544 17- bit words in the microengine and 336 68-bit words
in thenanocode engine which makes up 32,096 bits of ROM. There are fewer nanocodeinstructions than microcode
instructions in the 68000; this is to allow commonmicrocode instructions to map to the same nanocode instruction.

Control Unit

[6]

[7]

 - Before we discuss the LISA's memory management unit, we have to give a quick
overview on how the processor addresses memory. The 68000 supports both synchronous and asynchronous bus transfer.
The address and the data bus are driven by tristate outputs, which allow the buses to be controlled by other devices during
DMA operations in multiprocessors. The pins that control the flow of data between the buses are the R/W, AS, UDS, LDS,
and DTACK pins. Running at 8 MHz, the 68000 can use low-cost dynamic memory (DRAM) without any wait states.
Because cache memory is both expensive and complex, the cache memory generally was not found in most low-cost
microprocessors. Cache memory was not implemented until the 68020 processor and other later versions in the 68000
family; this kept the 68000 at a low price.

Memory Management System

[20]

In the Lisa, memory can be broken into three parts: main system memory, I/O memory, and special I/O memory. Main
system memory, or RAM, in this system can be upgraded to 1 MB of RAM (2 MB in the Lisa 2/Mac XL). Initially, the base
main memory starts off at 512K. The I/O memory is reserved for the I/O devices. Finally, the special memory is used for
booting up the computer and diagnostics.[5]

10/10/03 3:15 PMApple Lisa Architecture

Page 5 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

The Memory Management Unit (MMU) helps the operating system relocate objects in memory. The MMU method of
addressing is called segmentation. As mentioned before, the 68000 has 23 address lines. Lines A17-A23 are used to select
a specific segment out of 128 total segments. The rest of the bits serve as offset for segments. Each segment has two
registers assigned to it: SORG which describes the origin and SLIM which describes the size. The board then has a segment
limit register that correlates to the MMU the size of the segment, is the segment valid, and control which address space is
accessed. In order for the MMU to be setup, the SORG and the SLIM registers of all the segments must be initialized by the
OS.[16]

During an access, a memory error can be detected as either a soft error or a hard error. A soft error is an error that
happens during a board access that can be corrected. A hard error is when either a parity error or an unrecoverable
error happens during memory access. Once either of these errors is signaled, the board latches the address of the error,
interrupts the 68000, and puts the segment and page number in the status register. Therefore, a program can log soft
errors in the board and keep track of hard failures in main memory on a page by page basis for the MMU to map out the
bad pages.[5]

 - The Motorola68000 CPU is able to perform memory mapped I/O in either byte or word lengths.It
requires a memory address decoder, connected with the appropriate buscircuitry. The Motorola 68000 uses memory
mapped I/O, and device registersare assigned unique addresses within the memory address space. I/O dataand control
registers are used like memory locations.

I/O System

[14]

I/O peripherals are connected with the Motorola 68000 through address decoders.These I/O address decoders are used to
map hardware peripheral registersto specific memory locations. When the processor reads or write in one ofthese I/O
locations, the peripheral device will take an action. "For a memorymapped output location, the memory address decoder
provides a clock pulseto a latch capable of storing the output data. A memory-mapped input locationwill use the memory
address decoder to enable an octal buffer, placing datainto the CPU's data bus when active. A 16-bit I/O design requires
two octalbuffers, one latch/buffer for each half of the data bus. The same addressdecoder may be used with UDS (Upper
Data Strobe) and LDS (Lower Data Strobe)controlling the latch/buffer that gets activated. The LDS and UDS signalsare
used in the 68000 to indicate that an 8-bit bank of memory is used forthe memory or I/O transfer." LDS is active when
least significant 8 bitsare accessed, and UDS is active when the most significant 8 bits are accessed.[13]

Data Transfer Operations:

Data transfer between devices requires the following signals:

Address bus A1 through highest numbered address line
Data bus D0 through D15
Control signals

The read, write, read-modify-write, and CPU space cycles are describedfollowing. The indivisible read-modify-write
cycle implements interlockedmultiprocessor communications.[15]

Read Cycle:

The processor receives either one or two bytes of data from the memoryor from a peripheral device during a read cycle.
When the instruction indicatesbyte operation, the processor uses the internal A0 bit to determine whichbyte to read and
issues the appropriate data strobe. If the instructionindicates a word or long-word operation, the MC68000
processor reads bothupper and lower bytes concurrently by maintaining both upper and lower datastrobes. When A0 is
equal to zero, the upper data strobe is issued; whenA0 equals one, the lower data strobe is issued. When the data is
received,the processor internally positions the byte accordingly.

[11]

[11]

Write Cycle:

The processor sends bytes of data to the memory or peripheral deviceduring a write cycle. When the instruction indicates
a byte operation, theprocessor uses the internal A0 bit to determine which byte to write and issuesthe appropriate data
strobe. If the instruction specifies a word operation,the processor issues both UDS and LDS and writes both bytes. When
the A0bit is equal to zero, UDS is used; when the A0 bit is equal to one, LDSis used.[11]

External Bus Structure:

The Motorola 68000 microprocessor has a 16-bit external data busand a 24-bit address bus which can address 16MB of
external memory, whileimplementing 32 bit registers internally. Only 23 of these address lines,which are A1 to A23,
are available for use. Address line A0 is used insidethe processor to control other signals: UDS (Upper Data Strobe) and
LDS (LowerData Strobe).[15]

Even though, the Motorola 68000 microprocessor has a 16-bit external databus, it is able to transfer 8 bits through the
lower or the upper half ofits data bus. The lower data bus is used to transfer all bytes that haveeven addresses and upper
data bus is used to transfer memory addresses.Bus arbitration is another method of handling I/O. The BR (Bus Request)
input get activated when a DMA is requested. By activating this input, the68000 microprocessor generates a logic zero on
the BG pin. BG shows thatMotorola 68000 has stopped executing software and has open-circuit-ed itsaddress, data and
control bus connections. This allows an external DMA controller,or another microprocessor, to enter I/O and memory
space of the microprocessor,therefore allowing the external controller to access memory and I/O directly.The bus

10/10/03 3:15 PMApple Lisa Architecture

Page 6 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

request, bus grant, and bus grant acknowledge signals form a busarbitration circuit to classify which device becomes the
bus master device.[11]

Bus Request (BR):

This input is wired with bus request signals from all other devicesthat could be bus masters. The signal indicates to the
processor that someother device needs to become the bus master. Bus requests can be issued atany time during a cycle or
between cycles.

Bus Grant (BG):

This output signal indicates to all other potential bus master devices that the processor will relinquish bus control at the
end of the current bus cycle.

Bus Grant Acknowledge (BGACK):

This input indicates that some other device has become the bus master.This signal is not started before the following
conditions are satisfied:

A bus grant has been received.
Address strobe is inactive, which indicates that the microprocessor is not using the bus.
Data transfer acknowledges is inactive, which indicates that neither memory nor peripherals are using the bus.
Bus grant acknowledge is inactive, which indicates that no other device is still claiming bus mastership.

Read-Modify-Write Cycle:

The read-modify-write cycle does a read operation, changes the datain the arithmetic logic unit (ALU), and writes the
data back to the sameaddress. The address strobe (AS) remains maintained throughout the entirecycle, causing the cycle
indivisible. The test and set (TAS) instructionuses this cycle to provide a signaling feature without deadlock between
processorsin a multiprocessing situation. The TAS instruction is the only instructionwhich uses the read-modify-write
cycle, operates on bytes only. Therefore,all read-modify-write cycles are byte operations. "Bus arbitration is a
technique used by bus master devices to request, to be granted, and to acknowledgebus mastership."[11]

Requesting The Bus:

External devices capable of becoming bus masters maintain BR torequest the bus. This signal can be wired from any of the
devices in thesystem that can become bus master. The processor, which is at a lower buspriority level than the external
devices, gives up the bus after it finishesthe current bus cycle.[11]

Receiving The Bus Grant:

The processor maintains BG as soon as it can. In general, this processfollows internal synchronization immediately,
except when the processorhas made an internal decision to execute the next bus cycle but has not yetmaintained AS for
that cycle. In this situation, BG is delayed until ASis affirmed to indicate to external devices that a bus cycle is in
progress.BG can be routed through a network or through a specific priority-encodednetwork. Any method of external
arbitration which observes the protocol canbe used.[11]

 transfers are done using the followingcontrol signals: address strobe (AS), read/write (R/W),
upper and lowerdata strobes (UDS, LDS), and data transfer acknowledge (DTACK). The addressstrobe signal shows there
is a valid address on the address bus. Read/writedefines the data bus transfer as a read or write cycle. The data strobes
maintain the flow of data on the data bus and the data transfer acknowledgeshows that the data transfer is finished.

Asynchronous data

[15]

Asynchronous bus control:

Asynchronous data transfers are controlled by the following signals: address strobe, read/write, upper andlower data
strobes, and data transfer acknowledge. These signals are described below:

Address Strobe (AS):

This three-state signal indicates that the information on the address bus is a valid address.

Read/Write (R/W):

This three-state signal defines the data bus transfer as a read or writes cycle. The R/W signal relates to thedata strobe
signals described in the following paragraphs.

Upper Data Strobe And Lower Data Strobes (UDS & LDS):

These three-state signals and R/W control the flow of data on the data bus. Table 3-1 lists the combinations ofthese
signals and the corresponding data on the bus. When the R/W line is high, the processor reads from thedata bus. When the
R/W line is low, the processor drives the data bus. In 8-bit mode, UDS is always forced highand the LDS signal is used.

10/10/03 3:15 PMApple Lisa Architecture

Page 7 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

Data Transfer Acknowledge (DTACK):

This input signal indicates the completion of the data transfer.When the processor recognizes DTACK during a read cycle,
data is latched,and the bus cycle is terminated. When DTACK is recognized during a writecycle, the bus cycle is
terminated.

Lisa OS:
To meet the design goals and accommodate the applications planned for the Lisa, an OS had tobe chosen that could handle the
intensive graphics, have a reliable filesystem, do multiple tasks at once (multitasking),have good memory management, and
have a mechanism for inter-process communication. This left most of thepopular operating systems out (e.g. DOS, CP/M)
because they could not perform multitasking. UNIX would havebeen a good choice, but at the time was too large to be of
practical use and no graphics or IPC support hadbeen developed as yet. It had a very fragile filesystem that the end-user would
likely not be able to recoverdata from in the event of a system crash. Re-writing UNIX to conform to the Lisa's requirements
would havebeen very costly and more time consuming than was practical, so Apple wrote an OS for the Lisa from the groundup.
There are four main functional areas to the Lisa Operating System. It manages files, processes, memory, andhandles events and
exceptions.[1]

 - The Lisa OS handled files in a similar fashion to UNIX and Multics. Devicesand disks had to be mounted to be
used by the OS. All I/O was device independent and was handled as anuninterpreted stream of bytes, so all objects were
treated the same way with special functions used to handleparticular needs of a device when required. Since one of the
goals of the Lisa was reliability, a departure wasmade from the UNIX filesystem (as it existed at the time) and some
redundancy was built in to keep users fromlosing data in the event of a system crash. Each file maintained its descriptive
attributes in the master diskand in a block at the beginning of the file. Each block also maintained information to tell
which file itbelonged to. Apple provided a "scavenger" program that could rebuild the disk catalog if it became
 corrupted.

Filesystem

[1]

 - The Lisa OS was able to run multiple processes at once, similar to aUNIX environment without
the multi-user features. Processes are organized in a tree structure and can bespawned by a master process that is
initiated at boot time. A similar multiplexed, prioritized scheduler isused to allow processes to get CPU time, but unlike
UNIX, a nonpreemptive algorithm is employed. Byimplementing this type of algorithm, the overhead of locking and
unlocking resources prior to use is avoided.The Lisa OS allows all processes to perform certain functions. Processes can
"suspend, activate, kill, orotherwise control any other process." Termination of a parent process causes all of its
childprocess to be terminated as well. Inter-process communication (IPC) is done by sharing files, data segments in
memory, and/or events. To make the operating system more reliable, each process has its own stack space andlogical
address space.

Process Management

[1]

[1]

 - Since the Motorola MC 68000 did not provide virtualmemory capability, this functionality was
relegated to the OS and a separate memory management unit (MMU).Apple designers used a segmented memory model to
implement virtual memory. Processes have data and codesegments. The data segment is created as a stack and the code
segments, specified by the programmer at compiletime, help break the program up into smaller parts. All data segments
for a program have to be loaded into memory before that program can run. This is because the instructions that reference
the data segments are not restartable. Segments of code, however, are loaded into memory from disk as needed. The process
can request additional stack space if needed - up to sixteen additional segments.

Memory Management

[1]

Code segments can be either intrinsic (system libraries) or regular (shared by processes that are running different
instances of the same program). The reason that code segments can be swapped in as needed is because the instructionsthat
access the code segments are restartable. If one of those instructions (there are four - JMP, JSR, RTS, and RTE)tries to
access a code segment that is not currently loaded into memory, it will cause a bus error. This causes a trapto be sent to
the Lisa OS and it will then load the segment it needs and restart the instruction without the running programever being
interrupted.[1]

When the physical memory becomes full, the Lisa OS uses a clockpage replacement algorithm to determine which memory
segments it will swapout. Information about all of the memory segments is kept in a Segment DescriptorBlock (SDB)
that is internal to the MMU. The clock page replacement algorithmis based upon a circular list that can be thought of as a
clock face. Inthis case, the circular SDB list is represented as the clock face. Thereis a pointer that can be thought of as a
clock hand and when a page faultoccurs, the segment that the clock hand is pointing to is examined. Uponexamination, this
can result in either swapping out the current segment andadvancing the hand, or ignoring the current segment and
advancing the hand,then examining the next segment until if finds enough free segments or swapsout enough segments to
load the segments that are being requested. The buserror method is used here as well to determine which segments of
memoryhaven't been used and need to be swapped out.[1][10]

 - The Lisa OS also handles certaintypes of errors that occur during process execution.
These errors are called exceptions. Usually, they arecaused when a process tries to execute an illegal instruction, tries to
access a memory address that is notallocated to that process, tries to divide by zero, or other errors that would cause
problems elsewhere in thesystem. When one of these errors happens, a process can use one of three types of exception
handlers: OSsupplied default handlers that will simply terminate the process and keep it from interfering with other
processes, handlers that are supplied by the process, or user defined handlers.

Exception and Event Processing

[1]

Events occur when processes need to pass messages or control signals to each other. In the Lisa OS, the systemwrites the

10/10/03 3:15 PMApple Lisa Architecture

Page 8 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

event headers and it is up to the sending process to write the event. The receiving processinterprets the event message.
Events are passed on channels and the names of these channels are cataloged bythe file system. The Lisa OS maintained an
event channel with no name that allows processes to get systemevents that relate to its child processes.[1]

OS Support:
The Apple Lisa supports several operating systems in addition to the Lisa OS including Unix, CP/M, XENIX, and the Mac OS
(with the MacWorks emulator). [4]

Lisa Software:
To make the Lisa a useful tool, Apple released a productivity suite known as the Lisa OfficeSystem (later called "Lisa 7/7"
because "seven sevenths make a whole"). These applications wereprecursors to modern office software. Apple claimed that
anyone could learn these applications and put them toproductive use in about 30 minutes. All of them claimed WYSIWYG
(What-You-See-Is-What-You-Get) fidelity forprinting, a "revert to previous version" feature that would allow a user to
return to a previous documentversion if mistakes were made, and data from one application could be inserted into another.

[9]

[8]

The Lisa's word processor was called LisaWrite. The document size was only limited to the amount of disk spaceavailable.
Spreadsheet functions were performed by LisaCalc and each spreadsheet could have a maximum of 255rows and 255 columns.
LisaGraph was used to generate graphs that could be directly created from LisaCalc or bymanual input. It would display pie,
bar, line, and scatter graphs with maximum of around 2000 data points andthe graph would update instantly. LisaList was a
personal database program. It could handle databases ofapproximately 600KBytes. It had a maximum row size of 990 bytes and
allowed for a maximum of 100 columns. Datawas indexed using B* indexing, and data could be represented as text, number,
date, money, social securitynumber, time, phone number, and zip code. LisaTerminal allowed connections (via serial ports/
modems) to othercomputers. You could connect using either of the two serial ports, and LisaTerminal provided VT52, VT100,
andTTY emulation at speeds ranging from 50 to 19,200 baud. With Apple's Cluster Controller Emulator, the Lisacould be used
as an IBM 3270 display station. Project planning, management, and scheduling weredone by LisaProject. It could do
parallel or resource scheduling and could create project charts for visuallydisplaying project plans, schedules, and tasks.

[8]
[9]

To further its claim of the Lisa being easy to use, Apple developed an online help system called LisaGuide.People could teach
themselves how to use all of the Lisa's features with the LisaGuide online training course.If the printed manuals were not
available, LisaGuide had all of the necessary documentation online to answernearly any question a user might have. There was a
hardware diagnostic program called LisaTest that was soldfor a brief period, but Apple discontinued it and referred users to
Apple dealers for hardware diagnostics. [3]

Most of the Lisa applications were written in Pascal. To encourage third party developers, Apple provided theLisa Workshop
development environment. It was a scaled down version of the Lisa Monitor development environmentused by Apple's internal
developers and focused mainly on Pascal. There was also a Lisa ToolKit that allowedoutside developers to access the Lisa
Desktop Libraries.[3]

Other Lisa Features:
The Lisa had several other features that are worth mentioning. When the Lisa was powered off,it would save its desktop state
and all application states and go into a "standby" mode. When it was poweredback on, all of the users applications and
documents were restored to their previous state. There was asoftware adjustable contrast setting for the monitor and a
dimming feature that would dim the screen to protectit after a period of inactivity.

References:
1. Bruce Daniels, , November, 1983 The Architecture of the Lisa Personal Computer
2. , The Lisa/Lisa 2/Mac XLhttp://www.apple-history.com/quickgallery.html?where=lisa.html
3. David T. Craig, , The Legacy of the Apple Lisa Personal Computer: An Outsider's Viewhttp://lisa.sunder.net/mirrors/

Simon/Lisa/LisaLegacy/LegacyIndex.html
4. Glen Sanford, , , 1986-2002www.apple-history.comhttp://www.apple-history.com/lisa.html
5. Apple Computer, Inc. ,

, 1981
Lisa Hardware Reference Manualhttp://www.applefritter.com/lisa/texts/

LisaHardwareManual1981.pdf
6. Mark Smotherman, ,

, March 1999
A Brief History of Microprogramminghttp://mprc.pku.edu.cn/users/chengxu/Org_web_ext/

BriefHist_up/uprog.html
7. Chip Weems, ,

, 1995, 1996, 2001
University of Massachusetts Amherst Computer Science 535, Chapter 15 Control Unithttp://cs.ddart.net/

computer_architect/CmpSci535/Discussion15.html
8. Apple Computer, Inc. Product Specification Brochures, , November

1983
http://www.archaic-apples.com/files/lisa/brochure/

9. Semaphore Corporation, ,
, July 1984

Semaphore Signal, Issue 14, Exploring Lisa's New Office Systemhttp://www.applefritter.com/
lisa/texts/LisaSemaphoreSignal.pdf

10. William Sawyer, ,
, 31-Jan-2002

CPSC 342 - Operating Systems - Memory Managementhttp://www.cs.bilkent.edu.tr/~will/courses/
CS342/HTML%20slides/Chapter-04/sld024.htm

11. J. L. Antonakos,
, Prentice Hall, Columbus, Ohio, 1998

The 68000 Microprocessor: Hardware and Software Principles and Applications, Second and Fourth
Editions

12. Zargham, M.R. , Prentice-Hall, N.J., 1996Computer Architecture: Single and Parallel Systems
13. Wikipedia, The Free Online Encyclopediahttp://www.wikipedia.org/wiki/Motorola_68000_family
14. David D. Redhed, , Byte, vol. 9, Dec. 1984, pp. A106-A115The Lisa 2: Apple's Ablest Computer

10/10/03 3:15 PMApple Lisa Architecture

Page 9 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

15. Barry B. Brey, , Saunders/
HJB, 1992

The Motorola Microprocessor Family: 68000, 68008, 68010, 68020, 68030, and 68040

16. Thomas L. Harmon and Barbara Lawson, The Motorola MC68000 Microprocessor Family, Prentice-Hall, 1985
17. The Free Online Dictionary of Computing, , , 1999Motorola 68000http://burks.brighton.ac.uk/burks/foldoc/81/75.htm
18. Chris Chabris, , Antic Vol 4, No. 8, December 1985Introducing 520ST Assembly Language - MC 68000 Tutorial
19. Gabriel Acosta-Lopez, Richard Clark, and Anne Wysocki, ,

, 1995
Two Representative CISC Designshttp://physinfo.ulb.ac.be/

divers_html/PowerPC_Programming_Info/intro_to_risc/irt4_cisc3.html
20. Alan Clements, , PWS, 1987Microprocessor System Design - 68000 Hardware, Software, and Interfacing

Appendix:

Figure 1

10/10/03 3:15 PMApple Lisa Architecture

Page 10 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

Figure 2

10/10/03 3:15 PMApple Lisa Architecture

Page 11 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

Figure 3

Figure 4 - Exception Processing Sequence [16]

10/10/03 3:15 PMApple Lisa Architecture

Page 12 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

Figure 5 - Instruction Execution Time [16]

10/10/03 3:15 PMApple Lisa Architecture

Page 13 of 13http://www.cs.utc.edu/jdumas/cs460/papersfa02/applelisa/

